
Discrete-Time Hybrid Automata Learning: Legged
Locomotion Meets Skateboarding

Hang Liu1 Sangli Teng1† Ben Liu2 Wei Zhang2 Maani Ghaffari1
1University of Michigan 2Southern University of Science and Technology

†Corresponding Author: sanglit@umich.edu
Website, Code: https://umich-curly.github.io/DHAL/

Fig. 1: Demonstration of DHAL performance across various indoor and outdoor terrains, including slopes, carpets, sidewalks, step, and scenarios with additional
payloads or disturbance. The controller enables the robot to perform smooth and natural skateboarding motions, with reliable mode identification and transitions
under disturbances.

Abstract—This paper introduces Discrete-time Hybrid Au-
tomata Learning (DHAL), a framework using on-policy Rein-
forcement Learning to identify and execute mode-switching with-
out trajectory segmentation or event function learning. Hybrid
dynamical systems, which include continuous flow and discrete
mode switching, can model robotics tasks like legged robot
locomotion. Model-based methods usually depend on predefined
gaits, while model-free approaches lack explicit mode-switching
knowledge. Current methods identify discrete modes via seg-
mentation before regressing continuous flow, but learning high-
dimensional complex rigid body dynamics without trajectory
labels or segmentation is a challenging open problem. Our ap-
proach incorporates a beta policy distribution and a multi-critic
architecture to model contact-guided motions, exemplified by a
challenging quadrupedal robot skateboard task. We validate our
method through simulations and real-world tests, demonstrating
robust performance in hybrid dynamical systems.

I. INTRODUCTION
Legged robots are often regarded as the ideal embodiment

of robotic systems, designed to perform a wide range of tasks
and navigate diverse destinations. Many of these tasks, such

as skateboarding and boxing, are inherently contact-guided,
involving complex sequences of contact events [1]. Designing
and executing such contact-guided control is highly non-trivial
due to two major challenges: (1) the hybrid dynamics system
problem arising from the abrupt transitions introduced by
contact events [2], and (2) the sparsity of contact events, which
poses significant difficulties for both model-based and model-
free control strategies.

In model-based control, Hybrid Automata has been pro-
posed as a powerful framework to model systems with both
discrete and continuous dynamics [3, 4]. This framework has
been widely applied to behavior planning [5] and legged
locomotion. However, due to the combinatorial nature of
hybrid dynamics, finding optimal policies for hybrid systems
through model-based optimization is computationally chal-
lenging, especially for tasks with high-dimensional state and
action spaces.

In contrast, model-free reinforcement learning (RL) has
demonstrated success in solving optimal control problems

ar
X

iv
:2

50
3.

01
84

2v
1

 [
cs

.R
O

]
 3

 M
ar

 2
02

5

https://umich-curly.github.io/DHAL/

(OCP) for robotics by modeling transition dynamics as a
Markov Decision Process (MDP) and maximizing accumu-
lated rewards. Model-free RL requires minimal assumptions
and can be applied to a diverse range of tasks across different
dynamic systems [6, 7]. However, RL policies, often repre-
sented by deep neural networks, lack interpretability and fail
to explicitly model hybrid dynamics [8]. Furthermore, contact-
guided tasks pose additional challenges for RL due to the
inherent sparsity of contact events [1]. Sampling inefficiency in
RL often leads to suboptimal learning, and existing continuous
mapping policies struggle to handle the abrupt transitions
characteristic of hybrid dynamics.

To address these limitations, we propose a novel perspective
for solving contact-guided tasks by explicitly incorporating
hybrid dynamics systems into the learning framework. Our
approach explicitly models the flow dynamics of different
modes as well as the transitions between them. Unlike prior
model-free methods that rely on aggressive exploration to
achieve sparse rewards, our framework focuses on improving
sample efficiency in the action space, minimizing the risk of
unstable or unsafe behaviors.

To validate our method, we tackle the challenging task
of enabling a quadrupedal robot to skateboard. This task
exemplifies a highly dynamic, contact-guided, and hybrid
underactuated system, requiring precise handling of mode
transitions and contact events. The key contributions of this
work are summarized as follows:

1) Discrete Hybrid Automata Framework: We propose
a discrete hybrid automata framework for online rein-
forcement learning that eliminates the need for explicit
trajectory segmentation or event labeling.

2) Contact-guided task design: We combined multi-critic
architecture and beta distribution to effectively address
contact-guided problem in hybrid systems.

3) Sim2Real of Underactuated Skateboarding motion:
We achieved agile and robust sim-to-real performance in
the highly underactuated and hybrid task of skateboard
motion.

II. RELATED WORK

A. Legged Robot Control

The Model Predictive Control (MPC) [9, 10, 11] with
simplified single rigid body has been successfully applied to
motion planning of legged robot[12, 13, 14, 15], achieving
robust locomotion on flat ground under diverse gait patterns.
Corbères et al. [12], Grandia et al. [13] further integrated
motion planning and perception, enabling quadruped robots
to navigate complex terrains. However, such approaches are
highly dependent on accurate global state estimation, which
poses limitations in outdoor and long-range scenarios. Addi-
tionally, the gait pattern of model-based approach are designed
manually, which can not scale in complicated scenarios.

In contrast to the model-based approach, model-free rein-
forcement learning (RL) has demonstrated remarkable capabil-
ities in legged robot control, including high-speed locomotion

[16, 17, 18, 19], complex terrain traversal [20, 21, 22, 23],
manipulation, and interaction [24, 25, 26]. The main focus of
RL-based quadruped control in recent years is in the paradigm
of sim-to-real transfer [27, 22], safe reinforcement learning
[18], and gait control [28, 29, 30]. In this paper, we primarily
focus on the exploration of sparse motion patterns and the
embedding of hybrid dynamics learning.

B. Contact-guided locomotion pattern

The hybrid nature of contact dynamics makes it challenging
to synthesize optimal motions for contact-rich tasks. In model-
based methods, the discontinuities introduced by contact create
obstacles for gradient-based optimization. Kim et al. [31] and
[32, 33] address this issue by formulating it as a linear com-
plementarity problem (LCP) and relaxing the complementarity
constraints, while Westervelt et al. [3] adopt a hybrid dynamic
system combined with automata to handle contact.

In the realm of reinforcement learning (RL), the specifica-
tion of sparse or contact-guided motion patterns has not been
widely investigated or solved, such as explicitly prescribing
contact-based motion [1] or relying solely on key frame tra-
jectory tracking [34]. Considering real-world robot collisions
and constraints, sparse reward design in a high-dimensional
sampling space severely limits effective exploration [1]. In
contrast, under a multi-critic framework [34] combined with
a Beta action distribution [35], this paper achieves contact-
specified “skateboarding” motion on a quadruped robot, with
on-the-fly adjustments of the gait pattern.

C. Hybrid Dynamics

Hybrid dynamic systems are employed to describe systems
that feature both continuous states and discrete modes, and
they are widely used in model-based control and cyber-
physical systems [36]. For instance, floating-base robots are
often treated as hybrid dynamic systems due to the disconti-
nuities and jumps caused by contact. Recently, Ly and Lipson
[8], Chen et al. [2], Poli et al. [37], Teng et al. [38] have
leveraged data-driven approaches to construct either discrete
or continuous hybrid dynamic systems.

Unlike previous work, we integrate Reinforcement Learning
with Hybrid Dynamics, enabling the robot to learn a Hybrid
Dynamics Automaton for explicit mode switching and control
without requiring labels or segmentation.

III. BACKGROUND AND PROBLEM SETTING

For clarity and reference, Table I provides an overview of
the key symbols and abbreviations used throughout this paper.

A. Markov Decision Process

We model the robot control problem as an infinite-horizon
partially observable Markov decision process (POMDP), com-
posed by tuple M = (S,O, A, p, r, γ), with st ∈ S the
full states, ot ∈ O the partial observation of the agents
from the environment, at ∈ A the action the agent can
take to interact with the environments, and p(st+1|st, at) the
transition function of state st. Each transition is rewarded by a

straight–through

gradients

One-Hot

Activate
1tc +Encoder Decoder

ACTOR
(Controller)

a

b

		𝑃!		𝑃!

		𝑃"

		𝑃"

Discrete-time
Hybrid Automata

Beta Distribution

Hybrid Dynamics
History Trajectory

Non-activated
Dynamics Modules

Non-activated
Dynamics Modules

Non-activated
Dynamics Modules

Transi4on Dynamics

Hybrid Dynamics Representation

Current Observation

Sample

.....

Action

(c) (a)

(b)

𝑜#$%:# 𝑎#$%:#$'

𝑜# 𝑎#$'

𝑎#

𝑜#('

Fig. 2: Discrete-time Hybrid Dynamics Learning (DHAL) Framework: (a) During training, the network learns to select the mode and activate the corresponding
dynamics module (yellow-highlighted) to predict transition dynamics and contact. Here, Pi represents the probability of the robot being in mode i at time
t. (b) The temporal features extracted by the encoder are combined with the current state and last action into the actor. The actor update α, β, which define
the probability density function of the Beta distribution, and then samples joint actions from the Beta distribution. (c) In a real-world deployment, we use
different LED colors to indicate the active modes, showcasing smooth transitions and mode-specific behaviors.

reward function r : S×A → R with γ representing a discount
factor. The Reinforcement Learning optimization objective is
to maximize the expected total return E

[∑T
t=0 γ

trt

]
.

B. Discrete Hybrid Dynamical System

Though incorporating dynamic information into policies can
potentially enhance performance,, most existing approaches
assume a single dynamics model for legged robots, overlook-
ing their inherently hybrid nature. To address this limitation,
we aim to integrate information of the hybrid dynamical
systems into policy learning to achieve superior performance.

Hybrid dynamical system involves both discrete and con-
tinuous dynamics or states. The system has a continuous flow
in each discrete mode and can jump between these modes
[39, 37]. Although utilizing a set of ordinary differential equa-
tions (ODEs) with transition maps modeled by neural networks
has shown some promising results [37, 2], the continuous
integration is computational consuming for RL and not well-
compatible for real-world robotic control, which is a digital
control system. In this work, inspired by Borrelli et al. [40]
and Ly and Lipson [8], we adopt discrete hybrid automata to
model the dynamics of legged robots, which naturally exhibit
hybrid behaviors.

For simplicity of embedding discrete hybrid automata into
the reinforcement learning framework, we utilize the concept
of a switched affine system to model the hybrid dynamics for
legged robots. However, we utilize a set of nonlinear functions
instead of affine functions to model the dynamics in each mode
for legged robots. The dynamics of the legged robot can be

described as
st+1 = f it(st, at), (1)

where st ∈ Rn is the states, at ∈ Rm is the input, it ∈ I =
{1, 2, ...,K} is the modes at time step t, f it : Rn×Rm → Rn

is the dynamics on mode i. The mode it is determined by an
extra mode selector. We assume that all states of the system are
continuous-valued, not considering any discrete-valued state.
Dynamics for each mode is unique, i.e., f i ̸= f j ,∀i, j ∈ I.
The maximum number of mode K is assumed to be known.

In this work, we use neural networks to model both the
dynamics and the automata (mode selector), aiming to extract
a latent representation that informs the actor. To maintain
consistency with the stochastic nature of the MDP, we utilize
a β-VAE to model the state transition in equation (1). Unlike
hybrid systems described by continuous flow [39, 37], we omit
the explicit jump mapping between different modes, as it is
captured within the discrete-time dynamics (1).

C. Environment Design

To demonstrate the effectiveness of our approach, we aimed
to select a challenging environment that involves complex
mode transitions and contact-rich dynamics. Inspired by the
real-world example of dogs learning to ride skateboards, we
identified the task of a robotic dog skateboarding as a highly
demanding scenario. This task presents distinct hybrid dynam-
ics challenges, such as the significant differences between the
gliding mode and the pushing mode. We believe this represents
a highly worthwhile and meaningful challenge for validating

TABLE I: Important symbols and abbreviations

Meaning Symbol

POMDP

Full State st
Partial Observation ot

Action at
State Space S

Action Space A
Discount Factor γ

Hybrid Dynamics System

Discrete-time dynamics f it

Mode index it
Number of modes K

Jacobian J
Probability of each mode p

mode indicator vector δ
maximum number of modes K = |δ|

Environment

Joint Position q =
[
q
FL/FR/RL/RR
Hip,Thigh,Calf

]
Joint Velocity q̇ =

[
q̇
FL/FR/RL/RR
Hip,Thigh,Calf

]
Go1 Base Roll, Pitch,Yaw ϕ, θ, ψ
Go1 Base angular velocity ωx, ωy , ωz

Gravity gx,y,z

Action a =
[
a
FL/FR/RL/RR
Hip,Thigh,Calf

]
Phase Φ

Command cmd = [cx, cyaw]
Proprioception o = [q, q̇, gx,y,z , ϕ, θ, ψ, ωx, ωy , ωz]

Contact c
Torque τ

our method. Our method is not limited to the skateboarding
task but can also be expanded to other scenarios.

In this paper, we conducted experiments using the Unitree
Go1 robot and a normal skateboard for men. The Unitree
Go1 has dimensions of 645 mm × 280 mm × 400 mm when
standing and 540 mm × 290 mm × 130 mm when folded.
The skateboard used in our experiments measures 800 mm
× 254 mm × 110 mm. The Unitree Go1 is equipped with 12
actuated joints. Although it lacks the spinal degrees of freedom
present in real quadrupedal animals, our experimental results
demonstrate that it can still effectively control the skateboard’s
movement. To accelerate the training process and simplify the
design of the redundant system, we connected the end of the
Unitree Go1’s left forelimb to the skateboard using a spherical
joint in simulation, providing passive degrees of freedom along
the x, y, and z axes. Unlike Chen et al. [41], The wheels of
the skateboard can only passively rotate around their respec-
tive axes. Additionally, we simulated the skateboard’s truck
mechanism in the simulation using a position PD controller to
replicate its mechanical behavior.

IV. METHODS
We introduce DHAL, as shown in Fig. 2, to illustrate the

proposed controller [3] that leverages the model-based hybrid
dynamics. More specifically:

i. Discrete-time Hybrid Automata, a discrete mode se-
lector, to identify at each step time the one-hot latent
mode of the system.

ii. Dynamics Encoder, based on the mode z chosen from
discrete-time hybrid automata, the chosen dynamics
encoder will be activated and get a tight representation
of flow dynamics.

iii. Dynamics Decoder, to decode the representation and
predict transition dynamics ot+1 and contact event ct+1.

iv. Controller, based on the tight representation from the
dynamics encoder and observation at the current mo-
ment, control robot to perform skateboarding.

A. Discrete Neural Hybrid Automata
Previous research has explored modifications to the frame-

work of reinforcement learning, such as incorporating esti-
mators to predict transition dynamics [23]. However, prior
work has not explicitly considered and addressed the issue
of dynamics with mode switching. The dynamics of legged
robots inherently exhibit hybrid behavior due to contact events,
as illustrated in Fig. 3. We model the contact as a perfect
inelastic collision, which means the velocity of the contact
point instantaneously drops to zero from a nonzero value.
Consequently, the robot’s state also undergoes a discrete jump,
resulting in a hybrid dynamics formulation. To illustrate this,
consider a simplified example of a single 3-DoF leg attached
to a fixed base. The velocity of the contact point is given by

vc = Jc(q)q̇, (2)

where vc ∈ R3 is the linear velocity of the contact point,
Jc(q) ∈ R3×3 is the Jacobian, q̇ ∈ R3 is the joint angular
velocity. In most cases, Jc(q) is invertible, implying a discon-
tinuity in vc directly induces a discontinuity in q̇. This simple
example highlights the inherent hybrid nature of legged robot
dynamics.

|𝑣𝑐| ≠ 0

|𝑣𝑐
−| ≠ 0

|𝑣𝑐
+| = 0

Mode 1 Mode 2

Contact

Swing

Fig. 3: Switching of a hybrid system with inelastic collision. When the leg
makes contact with the ground, the linear velocity will abruptly drop to zero.

In this work, we aim to extract a latent representation of
the dynamics for the controller. To achieve this, we model the
dynamics for each mode and design a discrete-time hybrid
automata (DHA) to determine which dynamic is active at any
given time, as illustrated in Fig. 2. Since only partial obser-
vations ot are available in practice, rather than the full state
st, we consider partial discrete-time dynamics. As discussed
in Sec. III-B, we employ a β-VAE instead of a deterministic
dynamics model to better align with the stochastic nature of
reinforcement learning. This process can be expressed by

it = fDHA(ot−k:t, at−k−1:t−1; θDHA)

ot+1, ct+1 = f it
dec ◦ f it

enc(ot−k:t, at−k−1:t−1; θvae).
(3)

where it ∈ {1, 2, ...,K} is the mode for current time t, which
is determined by a state-action sequence (ot−k:t, at−k−1:t−1).
ct+1 ∈ S represents the contact information for each foot, see
(7). The maximal number of modes is pre-defined. The next
partial state ot+1 and contact information ct+1 is determined
by a β-VAE at mode i, taking the same input as the hybrid
automata. A key advantage of the β-VAE is that it directly
provides a latent representation of the dynamics. In conven-
tional switched affine systems [13], the hybrid automata relies
on multiple modules. In contrast, our approach simplifies it to
a single network that takes a window of past state-action as
input.

Specifically, The hybrid automata is designed to output
a one-hot latent, making this a classification problem. To
determine the mode, we employ a combination of a softmax
classifier and categorical sampling. First, the probability dis-
tribution over modes is computed as

p = fsoftmax ◦ fDHA_logit(ot−k:t, at−k−1:t−1; θDHA) (4)

where p is the probability for each mode, fsoftmax is the
softmax loss, flogit is the logit function, θDHA represents
the parameters of the DHA neural network. Next, categorical
sampling is applied to p to obtain a one-hot latent vector δ,
which indicates the selected dynamics mode:

δ ∼ Categorical(p),
n∑

i=1

δi = 1, δi ∈ {0, 1} (5)

where δi = 1 represents the mode is it = i.
With the hybrid automata, we build K corresponding dy-

namics β-VAEs for K modes. For each mode, the β-VAE
encodes the historical trajectory and extracts the time-sequence
feature into a latent representation, which will be subsequently
decoded into the next partial state ot+1. The latent represen-
tation in β-VAE encodes substantial dynamics information;
hence, we then use it in the controller. For the encoder, we
adopt a transformer architecture due to its superior ability to
capture temporal dependencies, which can be expressed by

zt =

M∑
i=1

δi · f it
enc(ot−k:t, at−k−1:t−1; θenc), (6)

where zt ∈ Rn is the latent representation, and the mode
selector is included using δ. The decoder then uses this
representation to predict ot+1, ct+1, which can be expressed
by

ôt+1, ĉt+1 =

M∑
i=1

δi · f it
dec(zt; θdec), (7)

where ct+1 ∈ [0, 1]n is the probability that each leg is in
contact at time t+1. We include contact information to make
learning hybrid switching easier for the networks.

Typically, The ground truth for mode label and partial
states are required to train these two neural networks [37];
however, the mode label is hard to obtain even in simulation.
To address this, motivated by Mitchell et al. [42], we utilize
the unsupervised learning method to train the mode selector.

Weighted normalized Advantage à PPO

Pusing Cri7c Gliding Cri7c Sim2Real Cri7c

ACTOR (Controller)

⏱ ⏱ 📈

🏋

Fig. 4: Multi-Critic Skateboard Task

We train the mode selector and the β-VAE simultaneously as
(3), where the mode is self-determined by constructing the
loss function as

Lvae =
∑
t

MSE(ôt+1, ot+1)+BCE(ĉt+1, ct+1)+βLKL), (8)

where ot+1, ct+1 are the ground truth values, MSE represents
mean-square-error loss, BCE represents binary-cross-entropy
loss. The KL divergence prevents the encoder from fitting
the data too flexibly and encourages the distribution of the
latent variable to be close to a unit Gaussian, while β is used
to control the trade-off scale. The hybrid automata is trained
by minimizing the prediction error of ot+1, ct+1, where the
correct mode label will result in a lower prediction error. Such
unsupervised learning does not require a ground truth for mode
labels. The discrete categorical sample results in discontinuity
of gradients, we apply the straight-through-gradient method
[43] to realize backpropagation during the training. Moreover,
the gradient of the discrete-time automata is independent of
PPO, ensuring accurate mode identification. However, the
gradient backpropagates through the encoder to extract useful
temporal features.

In addition, we encourage the mode to be distinguished by
minimizing the information entropy of the mode probability
p, resulting in the final loss:

LDHA = Lvae +H(p), (9)

where H represents information entropy, aiming to ensure that
the modes’ probabilities are as distinct as possible and to
prevent confusion between different modes.

Compared to [37] that models hybrid dynamics using a
continuous flow approach, we adopt a discrete-time formu-
lation. This formulation unifies mode switching and dynamics
within a single framework rather than treating them separately.
Furthermore, unlike [37] that requires pre-segmentation of the
trajectories to distinguish the mode, our method integrates
mode selection directly into the training process, streamlining
the entire workflow. The detailed network architecture and
hyper-parameters can be found in the Appendix.

B. Multi Critic Reinforcement Learning

Inspired by Zargarbashi et al. [34], Xing et al. [44], we adopt
the concept of multi-critic learning and apply it to the design of

multi-task objectives for different motion phases. Designing an
intuitive reward function for the robotic dog to perform skate-
boarding maneuvers is challenging. Therefore, we leverage
sparse contact-based rewards to guide the robot in executing
smooth pushing motions and gliding on the skateboard—two
distinctly different movement patterns. Unlike the approach
in Fu et al. [45], where minimizing energy consumption is
prioritized, we found that this approach struggles to naturally
induce the gliding motion. This difficulty arises because skate-
boarding, compared to standard quadrupedal locomotion, has
a much smaller stability margin. As a result, the robot tends
to avoid using the skateboard altogether to minimize energy
loss rather than embracing it as part of the task.

To address this challenge, we design two distinct tasks
corresponding to different phases of the cycle: gliding and
pushing. During the pushing phase, the robot’s primary ob-
jective is to track the desired speed, while during the gliding
phase, its goal is to maintain balance and glide smoothly on the
skateboard. Although we specify the motion phase transitions
using cyclic signals during training to ensure balanced learning
of both tasks, in real-world deployment, these cyclic signals
can be adapted on the fly or generated based on the robot’s
velocity. The cyclic signal serves as an indicator to inform the
robot with which movement pattern to adopt.

However, because the speed-tracking rewards and regular-
ization terms for sim-to-real adaptation are dense, while the
contact-related rewards are inherently sparse at the early stages
of exploration, using a single critic to estimate the value of
all rewards can lead to the sparse rewards’ advantages being
diluted by the dense rewards during normalization. This makes
it difficult for the robot to learn the desired different style
behaviors [34].

To mitigate this and generate different style motions, we
introduce a multi-critic framework, as illustrated in Fig. 4. We
define three reward groups, each associated with a different
critic:

• Gliding Critic: Responsible for evaluating rewards re-
lated to gliding, such as speed tracking.

• Pushing Critic: Focused on sparse contact-related re-
wards during the pushing phase.

• Sim2Real Critic: Responsible for rewards related to sim-
to-real adaptation, such as action regularization.

Each critic is updated separately to estimate its value
function. When calculating the overall advantage, the three
critics’ outputs are normalized and combined using weighted
summation. Similar to Zargarbashi et al. [34], the weights for
each critic’s advantage are treated as hyperparameters. This
approach reduces the sensitivity to reward tuning, thereby
simplifying the reward design process. Specifically, the reward
function are presented in Table. II and their values are in
Appendix A.

C. Beta Distribution Policy

In quadrupedal locomotion tasks, the mainstream frame-
works typically assume a Gaussian distribution as the policy
distribution in PPO due to its intuitive parameterization and

TABLE II: Summary of Reward Terms and Their Expressions. Each term is
multiplied by its phase coefficient (δglide or δpush) if it belongs to a specific
phase, and scaled by w· as listed in the text.

Gliding Critic Reward Expression

Feet on board δglide
∑4

i=1

(
∥pfeet,i − pglide,i∥ < 0.05

)
Contact number δglide Rcontact num22

Feet distance δglide exp
(
−

∑4
i=1 ∥pglide,j − pfeet,j∥

)
Joint positions δglide exp

(
−
∑12

i=1(qi − q
glide
i)2

)
Hip positions δglide exp

(
−
∑

i∈Hip(qi − q
glide
i)2

)
Pushing Critic Reward Expression

Tracking linear velocity δpush exp
(
− 1

σ

∥∥vcmd
x − vx

∥∥2)
Tracking angular velocity δpush exp

(
− (ωcmd

z −ωz)
2

σyaw

)
Hip positions δpush exp

(
−
∑

i∈Hip(qi − q
push
i)2

)
Orientation δpush ∥gxy∥2

Sim2Real Critic Reward Expression

Wheel contact number
(∑

i∈wheels ci = 4
)

Board–body height exp
(
−4

∣∣ (zbody − zboard) − 0.15
∣∣)

Joint acceleration
∑12

i=1

(
clip

(
q̇
(t−1)
i −q̇

(t)
i ,−10, 10

)
∆t

)2

Collisions
∑

i∈P

(
∥fi∥ > 0.1

)
Action rate

∥∥a(t) − a(t−1)
∥∥

Delta torques
∥∥τ (t) − τ (t−1)

∥∥2
Torques ∥τ∥2

Linear velocity (z-axis)
∥∥clip(vz , −1.5, 1.5)∥∥2

Angular velocity (x/y)
∥∥clip(ωxy , −1, 1)

∥∥2
Base orientation ∥gxy∥2

Cycle Calculation Expression

Cycle T
Phase ϕ ← sin

(
2π t/T

)
Still Indicator δstill

Glide Indicator δ
(t)
glide = LPF

([
ϕ < 0.5

]
∨ δstill

)
Push Indicator δ

(t)
push = LPF

([
ϕ ≥ 0.5

]
∧ ¬ δstill

)
Low pass filter LPF

ease of shape control [46]. However, when the action space has
strict bounds (e.g., joint position limits to prevent collisions in
quadrupedal robots), the Gaussian distribution can introduce
bias in policy optimization by producing out-of-bound actions
that need to be clipped [35]. While this issue has been noted
in prior work, it has not been widely addressed in the context
of robotic locomotion.

We observe that the Beta distribution offers a significant
advantage over the Gaussian distribution in effectively utilizing
the action space under sparse reward conditions. In contrast,
Gaussian policies may increase the variance excessively in an
attempt to explore more of the action space to trigger potential
sparse rewards. This aggressive strategy can lead to suboptimal
performance, getting stuck in local optima, and even result
in hardware damage and safety hazards during real-world
deployment. Therefore, we introduce the Beta distribution as
the policy distribution for our framework.

In our implementation, the policy outputs the shape param-

eters (α, β) of the Beta distribution for each joint indepen-
dently. To ensure that the Beta distribution remains unimodal
(α > 1, β > 1), we modify the activation function as follows:

SoftplusWithOffset(x) = Softplus(x) + 1 + 10−6

(10)
The standard Beta distribution is defined over [0, 1]:

f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, α, β > 0 (11)

To adapt this to the robot’s action space [−amax, amax] where
amax > 0, we apply the following transformation:

a ∼ B(α, β), a′ = a · 2amax − amax (12)

In the expression, the a′ denote the true action will be
executed by robot. This approach enables the policy to produce
bounded, valid actions within the desired range, preventing
out-of-bound behaviors while making full use of the action
space. We provide a proof in the Appendix B demonstrating
that our method does not introduce bias or result in variance
explosion.

V. EXPERIMENTS

In this section, the purpose of our experiment is to verify
whether our method can achieve the following behaviors:

• Q1: Why Hybrid Dynamics System is better than Single
Dynamics modeling?

• Q2: Can our method identify the mode of skateboarding?
• Q3: Can our method achieve skateboarding in the real-

world with disturbances?

A. Prediction of Dynamics

To answer Q1, We apply comparison on dynamics predic-
tion loss between different maximal modes, corresponding to
dimension of mode indicator |δ|. Among these modes, the
condition where number of mode |δ| equals to 1 represents
that using one network to model whole dynamics like [23].
We trained each condition three times with random seeds for
network initialization. As shown in Fig. 6, the curve shows
the average reconstruction loss under different modes. When
the maximum number of modes is 1, the loss is the highest.
After incorporating the hybrid dynamics idea, different modes
are switched to guide the conversion and mutation of flow
dynamics, the reconstruction loss is smaller. Starting from the
maximum number of modes 2, the improvement in prediction
accuracy begins to plateau.

This is consistent with our assumption that it is more
reasonable to build the system as a hybrid dynamics system
in a system with mutation and other properties. Considering
that the two main states of the skateboard are the skateboard
up and the skateboard down, when |δ| ≥ 2, there is a marginal
effect of improvement. When |δ| ≥ 4, the prediction accuracy
can hardly be improved and converges to the state of mode=3.
Therefore, in subsequent experiments, we believe that a mode

Fig. 5: Trajectory Prediction Visualization: The comparison between the actual
position trajectory (solid line) and the predicted position trajectory (dashed
line) for the right front leg joint motor of the physical Go1 robot during
skateboarding is shown. We selected the right front leg joint, which exhibits
the largest range of motion, as the visualization target. During deployment,
the system utilizes the mode selection results from the automata to choose the
corresponding decoder for prediction, consistent with the training process.

Fig. 6: Dynamics Prediction Loss: The agent’s dynamics prediction loss
MSE(ôt+1, ot+1) during training is shown in the figure, where the thick line
represents the average loss, and the shaded regions indicate the confidence
intervals across different seeds.

count of 3 is the reasonable number of modes for this system,
which corresponds to three motion modes: on the skateboard,
pushing the skateboard under the skateboard, and being in the
air between the two. We will showcase the mode identification
in the next section V-B.

To validate the accuracy of the predicted dynamics, we
deployed our DHAL algorithm on the physical robot and
recorded both the predicted dynamics and the actual dynamics
in real time. In this experiment, we applied a clock signal
with a fixed period of 2.5 seconds to the controller, alternating
the skateboard’s upward and downward movements. Notably,
this clock signal differs from the one used during the training
phase (4s), providing an additional test for the accuracy of
the predicted dynamics under new conditions. As shown in
Fig. 5, even in the absence of ut, the representation obtained
only from xt−k:t can accurately predict the robot’s trajectory
and jumps. In the next section, we will evaluate our method’s
capability for mode identification and its ability to adjust
phases on the fly.

Joint Posi)on

Time Step

MODE 1
MODE 2
MODE 3
FR_H
FR_T
FR_C
FL_H
FL_T
FL_C
RR_H
RR_T
RR_C
RL_H
RL_T
RL_C

Acceleration Stage

Fig. 7: Effectiveness of mode identification. In real-world deployment, we light up different RGB light bar colors according to the mode to show the switching
between different mode. The following figure shows the change in joint position relative to time in the test, and the background color is represented by the
color of the corresponding mode. [H, T, C] denote the Hip, Thigh, and Calf Joints, respectively.

Fig. 8: Visualization of hidden layer of the controller: Scatter points in
different colors correspond to the different modes identified by the system,
consistent with Fig. 7. Specifically, [green, blue, red] represent [mode 1, mode
2, mode 3], respectively.

B. Mode Identification

To answer Q2, we collected real-world trajectories of the
robot skateboarding along with the modes selected by the
controller for visualization, as shown in Fig. 7. Additionally,
we used different RGB LED colors to represent the dynamic
modules selected by the hybrid automata. From the figure, it
is visually evident that when the robot is in the gliding phase,
with all four feet standing firmly on the skateboard, the hybrid
automata classify this state as mode 3 (red). When the robot’s
right front foot starts to lift off the ground and enters the swing

phase, the automata naturally transition the mode to mode 1
(green). This brief transition corresponds to the sharp change
in joint angles shown in the figure. Once both of the robot’s
right legs are fully in contact with the ground, the automata
switch to mode 2 (blue).

This sequence of mode selections and transitions is smooth
and explicitly aligns with the decomposition of skateboarding
motion: (1) gliding phase, (2) airborne phase transitioning on
and off the skateboard, and (3) pushing phase. These results
demonstrate that our hybrid automata make mode selections
that are highly consistent with physical intuition.

Additionally, we applied t-distributed stochastic neighbor
embedding (t-SNE) to reduce the dimensionality of the hid-
den layer outputs from the controller’s neural network. As
illustrated in Fig. 8, the latent space exhibits a clearly defined
distribution across different modes. Interestingly, the resulting
latent structure is remarkably similar to that reported in [42].
Specifically, the red region primarily corresponds to the data
collected during the robot’s movements on the skateboard, the
blue region represents states where the right two legs are in
contact with the ground during pushing, and the green region
corresponds to the airborne phases when transitioning on and
off the skateboard.

This observation highlights two key points: (1) our con-
troller effectively handles motion control tasks across different
modes, and (2) our DHAL module can distinctly and accu-
rately differentiate between various modes.

C. Performance on Skateboarding

To answer Q3, this section presents ablation studies and
real-world experiments to evaluate our method. The analysis

Fig. 9: Comparison of Training Rewards: Comparison of mean reward during
training is shown in the figure, where the thick line represents the average
return, and the shaded regions indicate the maximal and minimal reward across
different seeds. Each method was trained using four random seeds to evaluate
performance.

is divided into the following parts: (1) Comparison of training
returns, (2) Comparison between single-critic method, and
(3) Experiments in real-world scenarios with disturbances,
including success rate statistics.

Comparison of training returns: Since the skateboarding
task is designed to be contact-guided, the training process ex-
hibits significant randomness, leading to considerable variance
in training curves even for the same method. Therefore, the
primary goals of this experiment are: (1) to identify the key
factors driving successful training, and (2) to evaluate whether
our method can approach optimal performance.

For a comparative evaluation, we compared the following
algorithms with access to proprioceptions only:

1) PPO-oracle-beta: Training a policy with full privileged
observations and the Beta distribution.

2) DreamWaq [23]: Training an dynamics module to esti-
mate velocity and future observation.

3) PPO-curiosity [46, 1]: Training directly with only pro-
prioception and following the curiosity reward design[1].

As shown in Fig. 9, our method could achieve compara-
ble performance with PPO-oracle-beta, which has privileged
observation about skateboard information. Notably, for the
methods with Gaussian distribution, the robot cannot learn
how to do skateboarding even leading to dangerous motion,
which makes real-world deployment infeasible. The result
aligns with the discussion in IV-C: in environments with high
exploration difficulty, Gaussian distributions tend to prioritize
increasing variance to expand the exploration range, thereby
randomly encountering “reward points”. However, due to the
physical constraints of the robot, this exploration strategy
introduces bias, causing Gaussian distribution policies to favor
movements closer to the constraints and ultimately leading to
failure [35].

Comparison with single-critic: We trained both our multi-
critic method and the single-critic method for comparison.
Since our multi-critic approach normalizes the advantages of
different reward groups and combines them through weighted

Fig. 10: Comparison between single-critic policy and multi-critic policy:
Single-critic-wo-transfer (A1 ∼ A3), Single-critic-w-transfer (B1 ∼ B3),
ours (C1 ∼ C3).

summation, while the single-critic approach lacks this weight-
ing advantage mechanism, we evaluated two configurations of
the single-critic method:

• Single-critic-w-transfer: A single-critic setup with the
same reward configuration as the multi-critic method,
but with new reward weights transferred based on the
advantage weights

• Single-critic-wo-transfer: A single-critic setup with the
same reward configuration and weights as the multi-critic
method

As shown in Fig. 10, For the single-critic approach without
transferred weights, the robot exhibited aggressive and erratic
movements, making it difficult to handle disturbances. During
forward motion, excessive hyperflexion at the foot caused it
to get stuck, and when mounting the skateboard, the hind legs
often slipped off. In contrast, the single-critic approach with
transferred weights managed to successfully mount the skate-
board. However, during the pushing phase, the robot primarily
relied on its hind legs, leaving the front legs suspended for
extended periods, resulting in an unnatural gliding posture.

With our multi-critic training scheme, the robot achieved a
smooth and natural motion, efficiently executing rapid push-
ing and demonstrating significantly more stable and graceful
transitions on and off the skateboard. We obtained results
similar to Mysore et al. [47], demonstrating that the multi-
critic approach is well-suited for multi-style learning.

Quantitative Experiments: We conducted quantitative ex-
periments in real-world scenarios to evaluate whether our
method can successfully complete the skateboarding task
under real-world noise and disturbances. These disturbances
include, but are not limited to, sensor noise, skateboard prop-
erty variations, terrain irregularities, and dynamics noise [22].
Using the trained model, we tested the following scenarios:
(1) smooth ceramic flooring, (2) soft carpeted flooring, (3)
disturbance, (4) slope terrain, (5) single-step terrain, (6) un-
even terrain. Each scenario was tested ten times, with each test
containing at least one full cycle of mounting and dismounting
the skateboard. The test terrain is shown in Fig. 1 and success
rate statistics are shown in Table. III. More extreme terrain

TABLE III: Succes Rate Comparison: We deployed each method on a
real robot to evaluate the success rate. Each method was tested five times
per scenarios. Success was defined as completing at least one full up-
board and down-board motions, traverse over a distance of more than 5
meters, and avoiding abrupt movements or detachment from the skateboard.
✗ indicates complete failure(Massive torque caused the joints protection state,
for hardware protection, we first test torque value in simulation to make sure
it will no exceed safty range).

Method Ceramic Carpet Disturbance

Ours 100% 100% 100%
Our-wo-MC(transfered) 100% 100% 60%

Our-wo-MC 60% 60% 40%
Ours-wo-Beta ✗ ✗ ✗

DreamWaq ✗ ✗ ✗

Method Slope Single-step Uneven

Ours 80% 100% 60%
Our-wo-MC(transfered) 60% 40% 60%

Our-wo-MC 0% 40% 40%
Ours-wo-Beta ✗ ✗ ✗

DreamWaq ✗ ✗ ✗

experiments and validation in other task could be found in
Appendix E-C.

VI. LIMITATIONS AND DISCUSSION

1. Perception Limitations: To connect the robot’s left
front foot to the skateboard, we assumed a spherical joint to
prevent the skateboard from completely detaching from the
robot. The transition from walking to skateboarding presents
a significantly greater challenge, requiring hardware modifica-
tions, such as adjusting the camera layout and incorporating
multiple cameras to locate the skateboard. Furthermore, we did
not consider obstacle avoidance during skateboarding using
perception-based methods. Initially, we attempted to use the
Realsense T265 for state estimation but later determined that
it was unnecessary for this task. However, for future work,
when the foot is not fixed to the board, the state estimation
methods [48, 49, 50, 51, 52] need to be carefully integrated.

2. Complex skill Generalization: Our method cannot
generalize to extreme skateboarding techniques equivalent to
those of human athletes, such as performing an ollie. The
current simulation setup cannot accurately replicate the motion
and contact dynamics of passive wheels in such challenging
scenarios. Instead, we relied on approximations and alterna-
tive techniques to simulate these dynamics as realistically as
possible.

3. Limitations in Dynamics Learning: The learned dy-
namics are not yet precise enough for model-based control.
Furthermore, the coupling between the controller and the
dynamics predictor prevents iterative optimization, such as that
used in MPC, limiting the flexibility and efficiency of our
approach.

4. Non-Trivial Environment Design: The environment
setting and design for robot skateboarding in non-trivial. This
part requires manual design and inspection. We believe that
in the future, integrating environment generation with large
models [53] could potentially help address this challenge.

VII. CONCLUSION

We proposed the Discrete-time Hybrid Automata Learning
(DHAL) framework to address mode-switching in hybrid
dynamical systems without requiring trajectory segmentation
or event function modeling. By combining a multi-critic ar-
chitecture and a Beta distribution policy, our method demon-
strates robust handling of contact-guided hybrid dynamics,
as validated through the challenging task of quadrupedal
robot skateboarding. Real-world experiments showed that our
approach achieves smooth and intuitive mode transitions,
effectively balancing gliding and pushing behaviors. While
limitations remain, such as terrain generalization and coupling
between the controller and dynamics predictor, DHAL offers
a promising step toward learning-based control for hybrid
systems in robotics.

ACKNOWLEDGMENTS

REFERENCES

[1] Chong Zhang, Wenli Xiao, Tairan He, and Guanya Shi. Wococo:
Learning whole-body humanoid control with sequential con-
tacts. arXiv preprint arXiv:2406.06005, 2024.

[2] Ricky TQ Chen, Brandon Amos, and Maximilian Nickel. Learn-
ing neural event functions for ordinary differential equations. In
International Conference on Learning Representations.

[3] E.R. Westervelt, J.W. Grizzle, and D.E. Koditschek. Hybrid
zero dynamics of planar biped walkers. IEEE Transactions on
Automatic Control, 48(1):42–56, 2003. doi: 10.1109/TAC.2002.
806653.

[4] Koushil Sreenath, Hae-Won Park, and Ioannis Poulakakis. A
compliant hybrid zero dynamics controller for stable, efficient
and fast bipedal walking on mabel. The International Journal
of Robotics Research, 30(9):1170–1193, 2011.

[5] Mostafa Khazaee, Majid Sadedel, and Atoosa Davarpanah.
Behavior-based navigation of an autonomous hexapod robot
using a hybrid automaton. Journal of Intelligent & Robotic
Systems, 102(2):29, 2021.

[6] Zhongyu Li, Xuxin Cheng, Xue Bin Peng, Pieter Abbeel, Sergey
Levine, Glen Berseth, and Koushil Sreenath. Reinforcement
learning for robust parameterized locomotion control of bipedal
robots. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 2811–2817. IEEE, 2021.

[7] Yandong Ji, Zhongyu Li, Yinan Sun, Xue Bin Peng, Sergey
Levine, Glen Berseth, and Koushil Sreenath. Hierarchical
reinforcement learning for precise soccer shooting skills using a
quadrupedal robot. In 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1479–1486.
IEEE, 2022.

[8] Daniel L. Ly and Hod Lipson. Learning symbolic represen-
tations of hybrid dynamical systems. Journal of Machine
Learning Research, 13(115):3585–3618, 2012. URL http://jmlr.
org/papers/v13/ly12a.html.

[9] Sangli Teng, William Clark, Anthony Bloch, Ram Vasudevan,
and Maani Ghaffari. Lie algebraic cost function design for
control on lie groups. In 2022 IEEE 61st Conference on
Decision and Control (CDC), pages 1867–1874. IEEE, 2022.

[10] Sangli Teng, Ashkan Jasour, Ram Vasudevan, and Maani Ghaf-
fari. Convex geometric motion planning of multi-body systems
on lie groups via variational integrators and sparse moment
relaxation. The International Journal of Robotics Research,
page 02783649241296160, 2024.

[11] Sangli Teng, Ashkan Jasour, Ram Vasudevan, and Maani Ghaf-
fari Jadidi. Convex Geometric Motion Planning on Lie Groups
via Moment Relaxation. In Proceedings of Robotics: Science

http://jmlr.org/papers/v13/ly12a.html
http://jmlr.org/papers/v13/ly12a.html

and Systems, Daegu, Republic of Korea, July 2023. doi:
10.15607/RSS.2023.XIX.058.

[12] Thomas Corbères, Carlos Mastalli, Wolfgang Merkt, Ioannis
Havoutis, Maurice Fallon, Nicolas Mansard, Thomas Flayols,
Sethu Vijayakumar, and Steve Tonneau. Perceptive locomotion
through whole-body mpc and optimal region selection, 2024.
URL https://arxiv.org/abs/2305.08926.

[13] Ruben Grandia, Fabian Jenelten, Shaohui Yang, Farbod Farshid-
ian, and Marco Hutter. Perceptive locomotion through nonlinear
model-predictive control. IEEE Transactions on Robotics, 39
(5):3402–3421, 2023. doi: 10.1109/TRO.2023.3275384.

[14] Sangli Teng, Dianhao Chen, William Clark, and Maani Ghaffari.
An error-state model predictive control on connected matrix lie
groups for legged robot control. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages
8850–8857. IEEE, 2022.

[15] Sangli Teng, Yukai Gong, Jessy W Grizzle, and Maani Ghaffari.
Toward safety-aware informative motion planning for legged
robots. arXiv preprint arXiv:2103.14252, 2021.

[16] Gabriel B Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and
Pulkit Agrawal. Rapid locomotion via reinforcement learning.
The International Journal of Robotics Research, 43(4):572–587,
2024.

[17] Srinath Mahankali, Chi-Chang Lee, Gabriel B. Margolis,
Zhang-Wei Hong, and Pulkit Agrawal. Maximizing quadruped
velocity by minimizing energy. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages 11467–
11473, 2024. doi: 10.1109/ICRA57147.2024.10609983.

[18] Tairan He, Chong Zhang, Wenli Xiao, Guanqi He, Changliu Liu,
and Guanya Shi. Agile but safe: Learning collision-free high-
speed legged locomotion. In Robotics: Science and Systems
(RSS), 2024.

[19] Zhongyu Li, Xue Bin Peng, Pieter Abbeel, Sergey Levine,
Glen Berseth, and Koushil Sreenath. Reinforcement learning
for versatile, dynamic, and robust bipedal locomotion con-
trol. The International Journal of Robotics Research, page
02783649241285161.

[20] Xuxin Cheng, Kexin Shi, Ananye Agarwal, and Deepak Pathak.
Extreme parkour with legged robots. In 2024 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages
11443–11450. IEEE, 2024.

[21] Yi Cheng, Hang Liu, Guoping Pan, Houde Liu, and Linqi
Ye. Quadruped robot traversing 3d complex environments with
limited perception. In 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 9074–9081.
IEEE, 2024.

[22] Xinyang Gu, Yen-Jen Wang, Xiang Zhu, Chengming Shi,
Yanjiang Guo, Yichen Liu, and Jianyu Chen. Advancing
humanoid locomotion: Mastering challenging terrains with de-
noising world model learning. arXiv preprint arXiv:2408.14472,
2024.

[23] I Made Aswin Nahrendra, Byeongho Yu, and Hyun Myung.
Dreamwaq: Learning robust quadrupedal locomotion with im-
plicit terrain imagination via deep reinforcement learning. In
2023 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 5078–5084, 2023. doi: 10.1109/ICRA48891.
2023.10161144.

[24] Zipeng Fu, Xuxin Cheng, and Deepak Pathak. Deep whole-
body control: learning a unified policy for manipulation and
locomotion. In Conference on Robot Learning, pages 138–149.
PMLR, 2023.

[25] Minghuan Liu, Zixuan Chen, Xuxin Cheng, Yandong Ji, Rizhao
Qiu, Ruihan Yang, and Xiaolong Wang. Visual whole-body
control for legged loco-manipulation. The 8th Conference on
Robot Learning, 2024.

[26] Yandong Ji, Gabriel B Margolis, and Pulkit Agrawal. Dribble-
bot: Dynamic legged manipulation in the wild. In 2023 IEEE

International Conference on Robotics and Automation (ICRA),
pages 5155–5162. IEEE, 2023.

[27] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik.
Rma: Rapid motor adaptation for legged robots. arXiv preprint
arXiv:2107.04034, 2021.

[28] Gabriel B Margolis and Pulkit Agrawal. Walk these ways:
Tuning robot control for generalization with multiplicity of
behavior. In Conference on Robot Learning, pages 22–31.
PMLR, 2023.

[29] Yuxiang Yang, Tingnan Zhang, Erwin Coumans, Jie Tan, and
Byron Boots. Fast and efficient locomotion via learned gait
transitions. In Conference on robot learning, pages 773–783.
PMLR, 2022.

[30] Gijeong Kim, Yong-Hoon Lee, and Hae-Won Park. A learning
framework for diverse legged robot locomotion using barrier-
based style rewards. arXiv preprint arXiv:2409.15780, 2024.

[31] Gijeong Kim, Dongyun Kang, Joon-Ha Kim, Seungwoo Hong,
and Hae-Won Park. Contact-implicit model predictive control:
Controlling diverse quadruped motions without pre-planned
contact modes or trajectories. The International Journal
of Robotics Research, 0(0):02783649241273645, 0. doi:
10.1177/02783649241273645. URL https://doi.org/10.1177/
02783649241273645.

[32] Wanxin Jin and Michael Posa. Task-driven hybrid model
reduction for dexterous manipulation. IEEE Transactions on
Robotics, 2024.

[33] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct
method for trajectory optimization of rigid bodies through
contact. The International Journal of Robotics Research, 33
(1):69–81, 2014. doi: 10.1177/0278364913506757. URL
https://doi.org/10.1177/0278364913506757.

[34] Fatemeh Zargarbashi, Jin Cheng, Dongho Kang, Robert Sumner,
and Stelian Coros. Robotkeyframing: Learning locomotion with
high-level objectives via mixture of dense and sparse rewards.
arXiv preprint arXiv:2407.11562, 2024.

[35] Po-Wei Chou, Daniel Maturana, and Sebastian Scherer. Im-
proving stochastic policy gradients in continuous control with
deep reinforcement learning using the beta distribution. In
International conference on machine learning, pages 834–843.
PMLR, 2017.

[36] Anxing Xiao, Wenzhe Tong, Lizhi Yang, Jun Zeng, Zhongyu
Li, and Koushil Sreenath. Robotic guide dog: Leading a human
with leash-guided hybrid physical interaction. In 2021 IEEE
International Conference on Robotics and Automation (ICRA),
pages 11470–11476. IEEE, 2021.

[37] Michael Poli, Stefano Massaroli, Luca Scimeca, Sanghyuk
Chun, Seong Joon Oh, Atsushi Yamashita, Hajime Asama,
Jinkyoo Park, and Animesh Garg. Neural hybrid automata:
Learning dynamics with multiple modes and stochastic
transitions. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34,
pages 9977–9989. Curran Associates, Inc., 2021. URL
https://proceedings.neurips.cc/paper files/paper/2021/file/
5291822d0636dc429e80e953c58b6a76-Paper.pdf.

[38] Sangli Teng, Kaito Iwasaki, William Clark, Xihang Yu, Anthony
Bloch, Ram Vasudevan, and Maani Ghaffari. A general-
ized metriplectic system via free energy and system˜ iden-
tification via bilevel convex optimization. arXiv preprint
arXiv:2410.06233, 2024.

[39] Rafal Goebel, Ricardo G Sanfelice, and Andrew R Teel. Hybrid
dynamical systems. IEEE control systems magazine, 29(2):28–
93, 2009.

[40] Francesco Borrelli, Alberto Bemporad, and Manfred Morari.
Predictive control for linear and hybrid systems. Cambridge
University Press, 2017. Chapter 16.3.

[41] Shuxiao Chen, Jonathan Rogers, Bike Zhang, and Koushil

https://arxiv.org/abs/2305.08926
https://doi.org/10.1177/02783649241273645
https://doi.org/10.1177/02783649241273645
https://doi.org/10.1177/0278364913506757
https://proceedings.neurips.cc/paper_files/paper/2021/file/5291822d0636dc429e80e953c58b6a76-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/5291822d0636dc429e80e953c58b6a76-Paper.pdf

Sreenath. Feedback control for autonomous riding of hov-
ershoes by a cassie bipedal robot. In 2019 IEEE-RAS 19th
International Conference on Humanoid Robots (Humanoids),
pages 1–8. IEEE, 2019.

[42] Alexander Luis Mitchell, Wolfgang Xaver Merkt, Mathieu
Geisert, Siddhant Gangapurwala, Martin Engelcke, Oiwi Parker
Jones, Ioannis Havoutis, and Ingmar Posner. Vae-loco: Versatile
quadruped locomotion by learning a disentangled gait represen-
tation. IEEE Transactions on Robotics, 39(5):3805–3820, 2023.
doi: 10.1109/TRO.2023.3297015.

[43] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Esti-
mating or propagating gradients through stochastic neurons for
conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[44] Jiaxu Xing, Ismail Geles, Yunlong Song, Elie Aljalbout, and
Davide Scaramuzza. Multi-task reinforcement learning for
quadrotors. IEEE Robotics and Automation Letters, 2024.

[45] Zipeng Fu, Ashish Kumar, Jitendra Malik, and Deepak Pathak.
Minimizing energy consumption leads to the emergence of gaits
in legged robots. In 5th Annual Conference on Robot Learning.

[46] Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter.
Learning to walk in minutes using massively parallel deep
reinforcement learning. In Conference on Robot Learning, pages
91–100. PMLR, 2022.

[47] Siddharth Mysore, George Cheng, Yunqi Zhao, Kate Saenko,
and Meng Wu. Multi-critic actor learning: Teaching rl policies
to act with style. In International Conference on Learning
Representations, 2022.

[48] Sangli Teng, Mark Wilfried Mueller, and Koushil Sreenath.
Legged robot state estimation in slippery environments using
invariant extended kalman filter with velocity update. In 2021
IEEE International Conference on Robotics and Automation
(ICRA), pages 3104–3110. IEEE, 2021.

[49] Xihang Yu, Sangli Teng, Theodor Chakhachiro, Wenzhe Tong,
Tingjun Li, Tzu-Yuan Lin, Sarah Koehler, Manuel Ahumada,
Jeffrey M Walls, and Maani Ghaffari. Fully proprioceptive slip-
velocity-aware state estimation for mobile robots via invariant
kalman filtering and disturbance observer. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 8096–8103. IEEE, 2023.

[50] Zijian He, Sangli Teng, Tzu-Yuan Lin, Maani Ghaffari, and
Yan Gu. Legged robot state estimation within non-inertial
environments. arXiv preprint arXiv:2403.16252, 2024.

[51] Sangli Teng, Harry Zhang, David Jin, Ashkan Jasour, Maani
Ghaffari, and Luca Carlone. GMKF: Generalized moment
kalman filter for polynomial systems with arbitrary noise. arXiv
preprint arXiv:2403.04712, 2024.

[52] Maani Ghaffari, Ray Zhang, Minghan Zhu, Chien Erh Lin, Tzu-
Yuan Lin, Sangli Teng, Tingjun Li, Tianyi Liu, and Jingwei
Song. Progress in symmetry preserving robot perception and
control through geometry and learning. Frontiers in Robotics
and AI, 9:969380, 2022.

[53] Genesis Authors. Genesis: A universal and generative physics
engine for robotics and beyond, December 2024. URL https:
//github.com/Genesis-Embodied-AI/Genesis.

APPENDIX A
MULTI-CRITIC

A. Multi-Critic PPO Loss design

Motivated by Zargarbashi et al. [34], we define P , G, and S
to represent the ”Pushing,” ”Gliding,” and ”Sim2Real” tasks,
respectively. Consequently, rP , rG , rS denote the weighted
sums of the specific reward groups, while VP , VG , VS corre-
spond to the respective value networks. The overall value loss

is given by Lvalue = LP+LG+LS , where each term is defined
as:

LP = Et

[
∥rP,t + γVP(st+1)− VP(st)∥2

]
(13)

LG = Et

[
∥rG,t + γVG(st+1)− VG(st)∥2

]
(14)

LS = Et

[
∥rS,t + γVS(st+1)− VS(st)∥2

]
(15)

Here, γ is the discount factor, and st represents the state
at time t. Each value loss minimizes the temporal difference
(TD) error for the corresponding reward group.

For advantage estimation in PPO, each reward group and its
associated critic calculate the advantage separately based on
the TD error. Taking ”Pushing” as an example, the TD error
is defined as:

δP,t = rP,t + γ(1− dt)VP,t+1 − VP,t (16)

where dt is an indicator variable denoting whether the
episode terminates at time t. The advantage is then calculated
recursively as:

AP,t = δP,t + γ(1− dt)λAP,t+1 (17)

Here, λ is the Generalized Advantage Estimation (GAE)
parameter, which balances the trade-off between bias and vari-
ance in advantage estimation. After calculating the advantage
for ”Pushing,” it is normalized as follows:

ÃP,t =
AP,t − µAP,t

σAP,t
+ ϵ

(18)

where µAP,t
and σAP,t

are the mean and standard deviation
of the advantage values for the ”Pushing” task, and ϵ is a small
constant added for numerical stability. This process is repeated
for both ”Gliding” and ”Sim2Real,” resulting in normalized
advantages ÃG,t and ÃS,t. Finally, the weighted sum of all
normalized advantages is computed as:

Ãt = ÃP,t + ÃG,t + ÃS,t (19)

The surrogate loss is then calculated as in the standard PPO
process:

Lsurrogate = Et

[
min

(
αtÃt, clip(αt, 1− ϵ, 1 + ϵ)Ãt

)]
(20)

where αt is the ratio between the new policy and the old
policy probabilities. Finally, the overall PPO loss is computed
as:

LPPO = Lvalue + Lsurrogate − c · H(πθ) (21)

Here, H(πθ) represents the entropy of the policy πθ, en-
couraging exploration, and c is a weighting coefficient. This
formulation integrates the value loss, the surrogate loss, and
an entropy regularization term to achieve robust and efficient
policy optimization.

https://github.com/Genesis-Embodied-AI/Genesis
https://github.com/Genesis-Embodied-AI/Genesis

Fig. 11: Real-world Experiments in Skateboard Park. For additional demonstrations, please refer to the our website, where more result videos are available.

TABLE IV: Reward weights and Advantage weights for skateboarding envi-
ronment design

Gliding Critic Reward Weight

Feet on board 0.3
Contact number 0.3
Feet distance 1.8
Joint positions 1.2
Hip positions 1.2

Pushing Critic Reward Weight

Tracking linear velocity 1.6
Tracking angular velocity 0.8
Hip positions 0.6
Orientation -2

Sim2Real Critic Reward Weight

Wheel contact number 0.8
Board–body height 1
Joint acceleration -2.5e-7
Collisions -1
Action rate -0.22
Delta torques -1.0e-7
Torques -1.0e-5
Linear velocity (z-axis) -0.1
Angular velocity (x/y) -0.01
Base orientation -25

Advantage Weight

Gliding Critic Advantage 0.35
Pushing Critic Advantage 0.4
Sim2Real Critic Advantage 0.25

B. Reward Detail

The contact number reward for the gliding phase is ex-
pressed as:

R = 2 ·Rskateb − Pground (22)

where Rskateb represents the reward for maintaining correct
contact with the skateboard, and Pground is the penalty for
undesired ground contact.

The skateboard contact reward is given by:

Rskateb = δglide·(
4∑

i=1

1(cskateb,i)+4·1(
4∑

i=1

1(cskateb,i) = 4)),

(23)
where δglide is a scaling coefficient for the gliding phase,

1(cskateb,i) indicates whether the i-th foot is in contact with
the skateboard, and an additional reward is provided if all four
feet maintain contact.

The ground contact penalty is expressed as:

Pground = δglide·(
∑

i∈{0,2}

1(∼ cskateb,i)+
∑

i∈{0,2}

1(cground,i)),

(24)
where 1(∼ cskateb,i) penalizes the lack of skateboard

contact for specific feet, and 1(cground,i) penalizes unintended
ground contact.

This reward design encourages the agent to maintain sta-
ble contact with the skateboard while avoiding unnecessary
ground contact, ensuring smooth and efficient gliding behavior.

The detailed reward weights is shown in Table. IV

APPENDIX B
BETA DISTRIBUTION

A. Why Gaussian distribution policy introduce bias

Based on Chou et al. [35], when a Gaussian policy πθ(a |
s) = N (µθ, σ

2
θ) is employed in a bounded action space

[−h, h](whatever because of environment manually design or
physical constraints of robots), any action a exceeding these
limits is clipped to clip(a) ∈ [−h, h]. Ideally, the policy
gradient should be computed as

∇θJ(πθ) = Ea∼πθ

[
∇θ log πθ(a | s)Aπ(s, a)

]
.

However, if the update actually uses the clipped action in the
value function,

gclip = ∇θ log πθ(clip(a) | s) Aπ
(
s, clip(a)

)
,

https://umich-curly.github.io/DHAL/

then integrating over all a reveals a discrepancy whenever
|a| > h. Specifically,

E[gclip]−∇θJ(πθ) =

Es

[∫
|a|>h

πθ(a|s)(∇θ log πθ(±h|s)Aπ(s,±h)

−∇θ log πθ(a|s)Aπ(s, a)) da

]
̸= 0.

Because a Gaussian often places nonnegligible probability
mass outside ±h, this mismatch fails to cancel out, producing a
biased gradient that nudges the policy to favor actions beyond
the valid range. The Policy Gradient of Gaussian distribution
policy is shown below.

∇σθ
J(θ) =

1

σ3
θ

Ea∼πθ

[(
(a− µθ)

2 − σ2
θ

)
Aπ(s, a)

]
.

Moreover, due to the bias in the policy, it may tend to
produce actions outside the valid range. Increasing the variance
becomes a direct consequence of this tendency. This forms a
positive feedback loop: the more the policy variance grows,
the more out-of-bound actions are sampled, and the larger
(a − µθ)

2 becomes in the gradient—even though the actions
are physically clipped. Unlike the Beta policy, a Gaussian
distribution can increase µ indefinitely. That’s the reason why
Gaussian policy need more cautious reward design.

B. Why Beta distribution do not introduce bias

For Beta distribution, we first need to rescale it from
[0, 1] to [−h,+h]. Suppose z̃ ∼ Beta(αθ(s), βθ(s)), which
is supported on [0, 1] and define a = ϕ(z̃) = 2h(z̃− 1

2). Thus
a ∈ [−h, h].

Because ϕ is a smooth, bijective function from [0, 1] →
[−h, h], we can define the policy’s pdf as:

πθ(a | s) = Betaαθ(s),βθ(s)

(
ϕ−1(a)

)
×
∣∣∣∣ ddaϕ−1(a)

∣∣∣∣ .
Concretely,

ϕ−1(a) =
a+ h

2h
,

∣∣∣∣ ddaϕ−1(a)

∣∣∣∣ = 1

2h
.

Hence,

πθ(a | s) = Betaαθ,βθ

(
a+ h

2h

)
× 1

2h
, a ∈ [−h, h].

Let us verify the critical zero-integral property for the Beta
policy:∫ +h

−h

πθ(a | s)∇θ log πθ(a | s) da =

∫ +h

−h

∇θπθ(a | s) da.

But∫ +h

−h

πθ(a | s) da = 1 (all the mass is inside [−h, h]).

Thus,

∇θ

∫ +h

−h

πθ(a | s) da = ∇θ[1] = 0.

Hence,∫ +h

−h

∇θπθ(a | s) da = 0, i.e.,
∫ +h

−h

πθ(a | s)∇θ log πθ(a | s) da = 0.

No boundary terms appear, because πθ(a | s) is zero outside
[−h, h].Thus, if plug πθ from above into the standard policy
gradient formula (1), we could get an unbiased estimator:

E
[
∇θ log πθ(a | s)Qπ(s, a)

]
= ∇θ

∫ +h

−h

πθ(a | s)Qπ(s, a) da

which equals to ∇θJ(πθ). A Beta(α, β) distribution on
[0, 1] has a well-known finite variance:

Var(Z) =
αβ

(α+ β)2(α+ β + 1)
.

After rescaling the beta range for action [−h, h],

Var(A) = 4h2 Var(Z) ≤ 4h2 × max
Z∈Beta

Var(Z).

And we already know Var(Z) ≤ 1
12 (if α = β = 1,

uniform). So:

Var(A) ≤ h2

3
.

The variance of a rescaled Beta cannot exceed h3/3, for all
α, β > 1 (we assume the control policy should be unimodal).

C. Realization Detail

We assume control policy for locomotion scenario is uni-
modal, therefore, α, β > 1. We define the activation function
for output layer of actor as shown below:

SoftplusWithOffset(x) = Softplus(x) + 1 + 1e− 6

During training, the action is sample from beta distribution
and scale to [−h, h]. For deployment, we directly use the mean
of distribution α/(α+ β) as the output.

APPENDIX C
NETWORK ARCHITECTURE AND TRAINING

HYPER-PARAMETER

In Table. VI, we outline the hyperparameters for DHAL.
Notably, the DHA is decoupled from both the encoder and
the actor when ppo loss propagation and is only updated
using the dynamics loss. During the PPO update, the PPO
loss backpropagates through actor and encoder.

TABLE VII: Reward weights for two single-critic method(w-transfer/ wo-
transfer)

Gliding Critic Reward Weight Weight(Transfer)

Feet on board 0.3 0.35 ∗ 0.3
Contact number 0.3 0.35 ∗ 0.3
Feet distance 1.8 0.35 ∗ 1.8
Joint positions 1.2 0.35 ∗ 1.2
Hip positions 1.2 0.35 ∗ 1.2

Pushing Critic Reward Weight Weight(Transfer)

Tracking linear velocity 1.6 0.4 ∗ 1.6
Tracking angular velocity 0.8 0.4 ∗ 0.8
Hip positions 0.6 0.4 ∗ 0.6
Orientation -2 0.4 ∗ −2

Sim2Real Critic Reward Weight Weight(Transfer)

Wheel contact number 0.8 0.25 ∗ 0.8
Board–body height 1 0.25 ∗ 1
Joint acceleration -2.5e-7 0.25 ∗ −2.5e− 7
Collisions -1 0.25 ∗ −1
Action rate -0.22 0.25 ∗ −0.22
Delta torques -1.0e-7 0.25 ∗ −1.0e− 7
Torques -1.0e-5 0.25 ∗ −1.0e− 5
Linear velocity (z-axis) -0.1 0.25 ∗ −0.1
Angular velocity (x/y) -0.01 0.25 ∗ −0.01
Base orientation -25 0.25 ∗ −25

TABLE V: Network Architecture and Training Hyper-parameter

Network Hyperparameters value

DHA Architecture MLP
DHA Hidden Dims [256, 64, 32]
VAE Encoder Architecture 1-D CNN
VAE Encoder time steps 20
VAE Encoder Convolutional Layers Input channel = [30, 20]
VAE Encoder Convolutional Layers Kernel=(6,4), Stride=(2,2)
VAE Decoder Hidden Dims [256, 128, 64]
VAE Latent Dims 20
VAE KL Divergence Weight(β) 1e-2
Actor Hidden Dims [512, 256, 128]
Gliding Critic Hidden Dims [512, 256, 128]
Pushing Critic Hidden Dims [512, 256, 128]
Sim2Real Critic Hidden Dims [512, 256, 128]

PPO HyperParameters Weight

Environments 4096
Collection Steps 24
Discount Factor 0.99
GAE Parameter 0.9
Target KL Divergence 0.01
Learning Rate Schedule adaptive
Number of Mini-batches 4
Clipping Paramete 0.2

TABLE VI: Randomization and Noise

Property Randomization value

Friction [0.6, 2.]
Added Mass [0, 3]kg
Added COM [-0.2, 0.2]
Push robot 0.5m/s per 8s
Delay [0, 20]ms

Sensor Noise Weight

Euler Angle N ∗ 0.08
Angular Velocity N ∗ 0.4
Projected Gravity N ∗ 0.05
Joint Position N ∗ 0.05
Joint Velocity N ∗ 0.1

APPENDIX D
ENVIRONMENT SETTING AND SIM2REAL DETAIL

A. Rolling Friction

We observed that in Isaac Gym, the simulation of rolling
objects, particularly wheels, is not highly accurate. This is
primarily reflected in the discrepancies between simulated
and real-world rolling friction, as well as imprecise collision
detection. To address this, we applied a compensation force
during training to roughly approximate the effects of rolling
friction on different terrains for the forward and backward
motion of the skateboard. The compensation force is defined
by the following formula:

Fpush,x =

Frand, if vskate,x > 0.3

−Frand, if vskate,x < −0.3

0, otherwise

Frand ∼ U(10, 25)

vskate,x = quat rotate inverse (qskate, vskate)

WhereFpush,x is the applied push force along the x-
axis, Frand ∼ U(10, 25) is the randomly sampled force,
and vskate,x is the skateboard’s velocity in its local
frame, computed using the inverse quaternion rotation
quat rotate inverse(qskate, vskate).

B. Skateboard Truck model

To simulate a realistic skateboard, we incorporated a bridge
structure into the robotic skateboard, consisting of a front
bridge and a rear bridge. Each bridge is modeled using a
position-based PD controller to emulate spring dynamics, with
the desired position and velocity set to zero at all times.

C. Contact Detection

We found that in Isaac Gym, the collision calculations
for skateboard motion are imprecise. This is evident in the
inaccuracies of the collision forces for passive rolling wheels
as well as the collision forces between the robot and the
skateboard. To address this, we designed the reward function
to combine relative position error with collision forces to
determine whether contact has occurred. This logic requires
manual design and implementation.

APPENDIX E
EXPERIMENTAL SUPPLEMENTARY NOTES

A. Training Cost

We train policy on an NVIDIA RTX 3090, each iteration
takes 3 ∼ 4 sec. Traning a policy could deploy in real-world
costs 6 ∼ 7 hours in total.

contact

Mode: 1 Mode: 2 Mode: 3

Mode: 1Mode: 2Mode: 3

Fig. 12: Visualization result of handstand task with DHAL framework.

B. Single-Critic Reward

In the experimental section, we compared the performance
of single-critic and multi-critic approaches. To help readers
clearly understand the differences between the two single-critic
setups, we list their respective reward configurations in Table.
VII.

C. Extreme Terrain Experiments

As shown in Fig. 11, we tested our robot in a skatepark
specifically designed for extreme skateboarding, featuring
challenging multi-level stair sets, U-shaped bowls, and terrain
with cliff-like characteristics. This environment allowed us to
evaluate the limits of our algorithm’s performance. Surpris-
ingly, our algorithm remained relatively stable across these
complex terrains. Although the robot occasionally deviated
from the skateboard due to terrain disturbances, it was still
able to recover and maintain a graceful skating posture.

D. Hybrid Dynamics automata Validation in other task

As shown in Fig. 12, We transferring our DHAL framework
to a robot handstand task. The flow dynamics and jump
dynamics remain clearly identifiable(In handstand task, the
mode is tightly coupled with hand contact).

	INTRODUCTION
	RELATED WORK
	Legged Robot Control
	Contact-guided locomotion pattern
	Hybrid Dynamics

	BACKGROUND AND PROBLEM SETTING
	Markov Decision Process
	Discrete Hybrid Dynamical System
	Environment Design

	METHODS
	Discrete Neural Hybrid Automata
	Multi Critic Reinforcement Learning
	Beta Distribution Policy

	EXPERIMENTS
	Prediction of Dynamics
	Mode Identification
	Performance on Skateboarding

	Limitations and discussion
	Conclusion
	Appendix A: Multi-Critic
	Multi-Critic PPO Loss design
	Reward Detail

	Appendix B: Beta Distribution
	Why Gaussian distribution policy introduce bias
	Why Beta distribution do not introduce bias
	Realization Detail

	Appendix C: Network Architecture and Training Hyper-parameter
	Appendix D: Environment Setting and Sim2Real Detail
	Rolling Friction
	Skateboard Truck model
	Contact Detection

	Appendix E: Experimental Supplementary Notes
	Training Cost
	Single-Critic Reward
	Extreme Terrain Experiments
	Hybrid Dynamics automata Validation in other task

